
4 CROSSTALK The Journal of Defense Software Engineering September 2006

In an era riddled with asymmetric cyber
attacks, claims about system reliability,

integrity and safety must also include
provisions for built-in security of the
enabling software. The Department of
Homeland Security (DHS) Software
Assurance Program has undertaken to
partner with software practitioners in
industry, government, and academia to
increase the availability and use of tools,
knowledge, and guidance that will help
improve the security and quality of the
software they produce. In addition to its
BuildSecurityIn Web portal [1] and
Software Assurance Common Body of
Knowledge [2], the DHS Software
Assurance Program is publishing Security
in the Software Life Cycle: Making Application
Development Processes – and Software Produced
by Them – More Secure [3] (freely down-
loadable from the DHS BuildSecurityIn
portal).

Background
Software is ubiquitous. Many functions in
the public and private sectors depend on
software to perform correctly even dur-
ing times of crisis despite attempts to
subvert or compromise its functions.
Software is relied on to handle sensitive
and high-value data on which users’ pri-
vacy, livelihoods, and lives depend. Our
national security and homeland security
increasingly depend on ever more com-
plex, interconnected, software-intensive
information systems that use Internet-
exposed networks as their common data
bus. Software enables and controls sys-
tems that run the nation’s critical infra-
structure: electrical power grids; water
treatment and distribution systems; air

traffic control and transportation signal-
ing systems; nuclear, biological, and
chemical laboratories and manufacturing
plants; medical and emergency response
systems; financial systems; and other crit-
ical functions, such as law enforcement,
criminal justice, immigration, and,
increasingly, voting. Software also pro-

tects other software. The majority of fil-
tering routers, firewalls, encryption sys-
tems, and intrusion detection systems are
implemented, at least in large part,
through the use of software.

Perhaps because of this dependence,
nation-state adversaries, terrorists, and
criminals have joined malicious and
recreational attackers in targeting this
growing multiplicity of software-inten-
sive systems. These new threats are both
better resourced and highly motivated to
discover and exploit vulnerabilities in
software. The National Institute of
Standards and Technology’s (NIST) spe-
cial publication 800-42, Guideline on
Network Security Testing [4] sums up the
challenge: Many successful attacks

exploit errors (bugs) in the software code
used on computers and networks. This is
why software security matters. As more
and more critical functions become
increasingly dependent on software, that
software becomes an extremely high-
value target.

The objective of Security in the Software
Life Cycle is to inform developers about
existing processes, methods, and tech-
niques that can help them to specify,
design, implement, configure, update,
and sustain software that is able to
accomplish the following:
1. Resist or withstand many anticipated

attacks.
2. Recover rapidly and mitigate damage

from attacks that cannot be resisted
or withstood.
The key to secure software is the

development process used to conceive,
implement, deploy, and update/sustain it.
A security-enhanced software development
life cycle process includes practices that
not only help developers root out and
remove exploitable defects (e.g., vulnera-
bilities) in the short term, but also, over
time, increase the likelihood that such
defects will not be introduced in the first
place.

Security in the Software Life Cycle also
addresses the risks associated with the
software supply chain, including risks
associated with selection and use of com-
mercial off-the-shelf and open source
software components, software pedigree
(or more accurately the inability to deter-
mine software pedigree), and outsourcing
of software development and support to
offshore organizations and unvetted
domestic suppliers.

Security in the Software Life Cycle

Karen Mercedes Goertzel
Booz Allen Hamilton

As a freely downloadable reference document, “Security in the Software Life Cycle: Making Application
Development Processes – and Software Produced by Them – More Secure” presents key issues in the security of soft-
ware and its development processes. It introduces a number of process improvement models, risk management and
development methodologies, and sound practices and supporting tools that have been reported to help reduce the vul-
nerabilities and exploitable defects in software and diminish the possibility that malicious logic and trap doors may
be surreptitiously introduced during its development. No single practice, process, or methodology offers the universal
silver bullet for software security. “Security in the Software Life Cycle” has been compiled as a reference document
with practical guidance intended to tie it together and inform software practitioners of a number of practices and
methodologies from which they can evaluate and selectively adopt to reshape their development processes to increase not
only the security but also the quality and reliability of their software applications, services, and systems, both in devel-
opment and in deployment.

Software Assurance

“The key to secure
software is the

development process
used to conceive,

implement, deploy, and
update/sustain it.”

Joe Jarzombek
Department of Homeland Security

Security in the Software Life Cycle

September 2006 www.stsc.hill.af.mil 5

Many security defects in software
could be avoided if developers were bet-
ter equipped to recognize the security
implications of their design and imple-
mentation choices. Quality initiatives that
reduce the number of overall defects in
software are a good start, as many of
those defects are security-related vulnera-
bilities. However, quality-based methods
that focus only on improving the correct-
ness of software seldom result in secure
software. This is because in quality terms,
correctness means correctness of the soft-
ware’s operation under anticipated, normal
conditions.

Attacks on software and its environ-
ment typically create unanticipated,
abnormal conditions. Moreover, rather
than targeting single defects, attackers
often leverage combinations of what
seem to be correct functionalities and
interactions in software. Individually,
none of those functionalities or interac-
tions might be problematical. Only when
they are combined in an unexpected or
unintended way does an exploitable vul-
nerability manifest. To a great extent,
software security relies on the developer’s
ability to anticipate the unexpected.

A software security program must
include training and educating developers
to do exactly that, and to recognize the
security implications not only of simple
defects, but also of abnormal series and
combinations of functions and interac-
tions within their software, and between
their software and other entities.
Developers need to work within a devel-
opment process framework that not only
allows but also encourages them to ana-
lyze their software and recognize the
security vulnerabilities that manifest from
seemingly minor individual defects and
coding errors, as well as their larger
design and implementation choices.

Security Enhancement of the
Software Development Life Cycle
Security enhancement of development life
cycle processes and practices requires a
shift in emphasis and an expansion of
scope of existing development activities
so that security is given equal importance
as other desirable properties, such as
usability, interoperability, reliability, safe-
ty, and performance. These shifts in
emphasis and scope will affect the life
cycle in the following ways:
1. Requirements. The review of the

software’s functional requirements
will include a security vulnerability
and risk assessment that forms the
basis for capturing the set of general

non-functional security requirements
(often stated in terms of constraints
on functionality) or derived security
provisions (not explicitly specified in
customer documents) that will miti-
gate the identified risks. These high-
level, non-functional/constraint re-
quirements will then be translated into
more specific requirements for func-
tionalities and functional parameters
that otherwise may not have been
included in the software specification.

2. Design and implementation.
Design assumptions and choices that
determine how the software will oper-
ate and how different modules/com-
ponents will interact should be ana-
lyzed and adjusted to minimize the
exposure of those functions and
interfaces to attackers. Implemen-
tation choices will start with selection
of only those languages (or language
constructs), libraries, tools, and
reusable components that are deter-
mined to be free of vulnerabilities, or
for which an effective vulnerability
mitigation can be realistically imple-

mented. Bugs in source code must be
flagged not just when they result in
incorrect functionality, but when oth-
erwise correct functionality is able to
be corrupted by unintended and
unusual inputs or configuration para-
meters.

3. Reviewing, evaluating, and testing.
Security criteria will be generated for
every specification, design, and code
review, as part of the software/system
engineering evaluation and selection of
acquired and reused components, and
as part of the software’s unit and inte-
gration test plans. Life cycle phase-
appropriate security reviews and/or
tests will establish whether all software
artifacts (e.g., code, documentation)
have satisfied their security exit criteria
at the end of one life cycle phase
before development is allowed to
move into the next phase.

4. Distribution, deployment, and
support. Distribution will be preced-
ed by careful code clean-up to remove
any residual security issues (e.g.,
debug hooks, hard-coded credentials).
Preparation for distribution will also
include documenting the secure con-
figuration parameters that should be
set when the software is installed;
these include both parameters for the
software itself and for any compo-
nents of its execution environment
(e.g., file system and Web server
access controls, application firewall)
that it will rely upon to protect it in
deployment. Secure by default distribu-
tion configurations and trustworthy
distribution mechanisms will be
adopted. Ongoing, post-deployment,
vulnerability and threat assessments,
and forensic analyses of successful
attacks will be performed for the soft-
ware and its environment. New
requirements to be satisfied in future
releases will be formulated based on
the assessment and analysis findings.

Risk-Driven Requirements
Engineering
It is easier to produce software that can
resist and recover from attacks when risk
management activities and checkpoints
are integrated throughout the software
life cycle. A key component of risk-dri-
ven software development occurs at the
beginning of the development process:
threat modeling. To identify and priori-
tize mitigation steps that must be taken,
developers first need to recognize and
understand the threats to their software,
including the threat agents, anticipated
attack patterns, vulnerabilities likely to be
exploited, and assets likely to be targeted,
and they need to assess the level of risk
that the threat will occur and its potential
impact if it does. Several freely down-
loadable methodologies have emerged to
support the developer in modeling
threats to applications and other soft-
ware-intensive systems, including the fol-
lowing:
• Microsoft’s ACE (Application

Consulting and Engineering) Threat
Analysis and Modeling (also called
Threat Modeling Version 2.0) [5].

• European Union Consultative Objec-
tive Risk Analysis System (CORAS)
[6, 7, 8] and Research Council of
Norway Model-Driven Development
and Analysis of Secure Information
Systems (SECURIS) [9, 10].

• Practical Threat Analysis (Technolo-
gies’ Calculative Threat Modeling
Methodology) [11].

“A key component of
risk-driven software

development occurs at
the beginning of the
development process:

threat modeling.”

Software Assurance

6 CROSSTALK The Journal of Defense Software Engineering September 2006

• Trike: A Conceptual Framework for
Threat Modeling [12].

• National Aeronautics and Space
Administration Software Security
Assessment Instrument [13, 14].

• Visa USA Payment Application Best
Practices [15].
A number of other system-level

methodologies and tools are also in use
for risk analysis of software-intensive
systems, including NIST’s Automated
Security Self Evaluation Tool, Carnegie
Mellon University’s Operationally
Critical Threat Asset and Vulnerability
Evaluation-Secure, and Siemens/Insight
Consulting Central Computer and
Telecommunications Agency Risk
Analysis and Management Method.
These methodologies are also introduced
in Security in the Software Life Cycle.

Security-Enhanced Process
Models and Development
Methodologies
The use of repeatable process improve-
ment models has been demonstrated to
improve the efficiency and adaptability
of software development life cycle activ-
ities and the overall quality of software
by reducing the number and magnitude
of errors. The Software Engineering
Institute’s Capability Maturity Model®

(CMM®) and General Electric’s Six
Sigma are the most widely used process
improvement models. A number of
CMM variants have been tailored for
specific communities or problem spaces,
e.g., CMM Integration (CMMI®), inte-
grated-CMM (iCMM), and System
Security Engineering (SSE)-CMM, which
is also an international standard [16].

Beyond the SSE-CMM, a number of
efforts have been undertaken to adapt or
extend existing maturity models or define
new process improvement models that
have security-enhancement as their main
objective. These include the following:
• Safety and Security Extensions to

CMMI/iCMM [17].
• Revised International Organization

for Standardization/International
Electrotechnical Commission (ISO/
IEC) Standard 15026 System and
Software Assurance, which adds securi-
ty assurance activities to ISO/IEC
15288 system life cycle and ISO/IEC
12207 software life cycle processes.

• Microsoft Security Development
Lifecycle (SDL) [18, 19].

• Comprehensive, Lightweight Appli-
cation Security Process (CLASP) [20].

• Carnegie Mellon University Software
Engineering institute (SEI) Secure
Team Software ProcessSM (TSPSM

Secure) [21].
The CMM and ISO/IEC process

models are defined at a higher level of
abstraction than SDL and CLASP, which
bridge the abstraction gap between
CMM-level models and software devel-
opment methodologies. It is quite possi-
ble to implement both a security-
enhanced CMMI or iCMM as an overar-
ching framework in which SDL or
CLASP processes can be executed. SDL
or CLASP could then itself provide a
framework in which life cycle, phase-spe-
cific, security-enhanced methods such as
Model-Driven Architecture (MDA) or
Aspect-Oriented Programming (AOP)
could be employed. Indeed, these higher-
level models are intended to be methodol-
ogy-neutral and to accommodate develop-
ment using any of a variety of method-
ologies.

Using Familiar Development
Methodologies in Ways that
Improve Software Security
Unlike process improvement models,
software development methodologies
are specific in purpose and applicability.
Efforts have been made to use existing
methodologies in ways that are expressly
intended to support the engineering of
security functionality in software. In a
few cases, efforts have been made to
adapt these methodologies to expressly
improve the security of the software
produced.

MDA
Defined by the Object Management
Group (OMG), MDA automatically
transforms Unified Modeling Language
(UML) models into platform-specific
models and generates a significant por-
tion of the application source code (the
eventual goal is to generate whole appli-
cations). By using MDA, developers need
to write less code, and the code they do
write can be less complex. As a result,
software contains fewer design and cod-
ing errors (including errors with security
implications). Researchers outside OMG
are looking at ways to add security to
MDA by combining it with elements of
Aspect-Oriented Modeling or by defining
new UML-based security modeling lan-
guages to be used in producing MDA-
based secure design models. Both
Interactive Objects’ ArcStyler [22] and

IBM/Rational’s Software Architect [23]
support MDA-based security modeling,
model checking, and automatic code gen-
eration from security models.

Object-Oriented Modeling
With UML
Unlike security functions, security proper-
ties in object-oriented modeling are treat-
ed as generic nonfunctional requirements
and thus do not require specific security
artifacts. UML, which has become the de
facto standard language for object-oriented
modeling, lacks explicit syntax for model-
ing the misuse and abuse cases that can
help developers predict the behavior of
software in response to attacks. Rec-
ognizing these omissions, some UML
profiles have been published that add
expressions for modeling security func-
tions, properties, threats and countermea-
sures, etc., in UML. SecureUML [24] pro-
vides extensions to support modeling of
access controls and authorization.
UMLSec [25] adds both access control/
authorization modeling extensions and
support for vulnerability assessment of
UML models. The CORAS UML profile
for security assessment [26], which has
been adopted as a recommended standard
by the OMG, is the most directly applica-
ble to software security needs as it pro-
vides UML extensions for modeling
threats and countermeasures.

Aspect-Oriented Software
Development (AOSD)
Object-oriented development requires
security properties and functions to be
associated with each individual object in
which that property/function must be
exhibited. Security properties such as non-
subvertability and functions such as code
signature validation are crosscutting, i.e.,
they are required in multiple objects. In
object-oriented development, the devel-
oper would have to replicate and propa-
gate the expressions of such cross-cutting
security properties and functions to every
object to which they pertain. This repre-
sents an unnecessarily high level of effort,
both to initially specify and even more to
make changes to cross-cutting security
functions and properties, because such
changes would also need to be replicated,
propagated, and tracked.

AOM and Design extend the expres-
sions possible in object-oriented model-
ing so that cross-cutting properties and
functions are able to be expressed only
once in a single modular component of
the software model and design specifica-
tion. This cross-cutting component is
then referred to by all the components/

® Capability Maturity Model, CMM, and CMMI are regis-
tered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

SM Team Software Process and TSP are service marks of
Carnegie Mellon University.

Security in the Software Life Cycle

objects to which the property/ function
pertains. AOP allows the developer to
write and maintain the cross-cutting com-
ponent at a single location in the code.
The AOP tools then automatically repli-
cate and propagate that cross-cutting
code to all appropriate locations through-
out the code base. This automated
approach reduces the potential that the
developer may inadvertently omit the
cross-cutting code from some compo-
nents/objects.

Agile Methods and Secure Software
Can Agile development produce secure
software? As with structured develop-
ment methodologies, Agile methods seek
to promote development of high-quality
software. With the exception of Lean
Development, the collection of method-
ologies that falls under the umbrella of
Agile Methods all share a commitment to
the core principles of the Agile Manifesto
[27]. According to the Agile Manifesto,
Agility is enhanced by continuous attention to
technical excellence and good design.
Proponents often cite key practices in
many agile methods that help reduce the
number of exploitable defects that are
introduced into software practices such as
enforced coding standards, simple
designs, pair programming, continuous
integration, and test-driven development
(also known as continuous testing).

It has been suggested that Agile meth-
ods can support risk-driven software
engineering if – and this a very big if – the
requirements-based, functional test-dri-
ven development approach that under-
pins all Agile methods is extended to
include the following:
• Redefine the customer (who drives all

response to change) to include the
stakeholders such as risk managers,
certifiers, and accreditors responsible
for enforcing security policy and pre-
venting and responding to attacks on
software.

• Expand agile testing to accommodate
both requirements-based and risk-
based tests (see Software Security
Testing).
Security in the Software Life Cycle includes

an extensive discussion of whether, and,
if so, how and when Agile methods can
be used for secure software development
without violating the Agile Manifesto’s
core principles.

Formal Methods and
Secure Software
Formal methods use mathematical proofs
and precise specification and verification
methods to clarify the expression and

understanding of software requirements
and design specifications. The strict math-
ematical foundations of formal methods
create a basis for positive assurance that
the software’s specifications are consis-
tent with its formally modeled properties
and attributes.

Formal methods have been used suc-
cessfully to specify and prove the correct-
ness and internal consistency of security
function specifications (e.g., authentica-
tion, secure input/output, mandatory
access control) and security-related trace
properties (e.g., secrecy). However, to
date, none of the widely used formal lan-
guages or techniques are explicitly devot-
ed to specification and verification of non-
trace security properties, such as non-sub-

vertability or correct, predictable behavior
in the face of unanticipated changes in
environment state.

Software Security Testing
Software security testing verifies that the
software produced is indeed secure. It
does this by observing the way in which
software systems and the components
they contain behave in isolation and as
they interact. The main objectives of soft-
ware security testing are: 1) Detection of
security defects, coding errors, and other
vulnerabilities including those that mani-
fest from complex relationships among
functions, and those that exist in obscure
areas of code, such as dormant functions;
2) demonstration of continued secure
behavior when subjected to attack pat-
terns; and 3) verification that the software
consistently exhibits its required security
properties and functional constraints
under both normal and hostile condi-
tions. However, a security requirements
testing approach alone demonstrates only
whether the stated security requirements

have been satisfied, regardless of whether
those requirements were adequate. Most
software specifications do not include
negative and constraint requirements such
as no failure may result in the software dumping
core memory or the software must not write input
to a buffer that is larger than the memory allo-
cated for that buffer.

Risk-based testing takes into account
the fact that during the time between
requirements capture and integration test-
ing, the threats to which the software will
be subject are likely to have changed. For
this reason, risk-based testing includes
subjecting the software to attack patterns
that are likely to exist at time of deploy-
ment, not just those that were likely at
time of requirements capture. In practical
terms, many of the same tools and tech-
niques used for functional testing will be
useful during security testing. The key dif-
ference will be the test scenarios exercised
in risk-based tests. The software’s security
test plan should include test cases (includ-
ing cases based on abuse and misuse
cases) that exercise areas and behaviors
that may not be exercised by functional,
requirements-based testing. These securi-
ty test cases should attempt to demon-
strate the following:
• The software behaves consistently and

securely under all conditions, both
expected and unexpected.

• If the software fails, the failure does
not leave the software, its data, or its
resources exposed to attack.

• Obscure areas of code and dormant
functions cannot be exploited or com-
promised.

• Interfaces and interactions among
components at the application, frame-
work/middleware, and operating-sys-
tem levels are consistently secure.

• Exception and error handling resolve
all faults and errors in ways that do
not leave the software, its resources,
its data, or its environment vulnerable
to unauthorized modification (disclo-
sure) or denial of service.

Security analysis and testing are most
effective when a multifaceted approach is
used that employs as wide a variety of
techniques and technologies as time and
resources allow. These techniques may
include the following:
• WWhhiittee bbooxx security reviews and

tests. Performed on source code,
white box testing techniques include
code security review (direct code
analysis, property-based testing);
source code fault injection with fault
propagation analysis; and automated
compile-time detection.

• Black box security test techniques.

September 2006 www.stsc.hill.af.mil 7

“Security analysis
and testing are most

effective when a
multifaceted approach
is used that employs
as wide a variety of

techniques and
technologies as time and

resources allow.”

Software Assurance

8 CROSSTALK The Journal of Defense Software Engineering September 2006

Targeting individual binary compo-
nents and/or the software system as a
whole, black box techniques are the
only testing option when source code
is not available. Black box techniques
include software penetration testing,
security fault injecting of binaries,
fuzz testing, and automated vulnera-
bility scanning.

• Reverse engineering. Disassembly
and decompilation generate, in the
former case, assembler code, and in
the latter, source code – both of
which can then be analyzed for secu-
rity-relevant implementation errors
and vulnerabilities. Decompiled
source code can be subjected to stan-
dard white box security tests and
tools. Reverse-engineering is often
more difficult and time-consuming
than other software security test tech-
niques; many commercial software
products use obfuscation techniques
to deter reverse-engineering. Like for-
mal methods, the level of effort
required makes reverse-engineering
practical only for the examination of
high-consequence, high-confidence,
or high-risk components. Even then,
there is no 100 percent guarantee of
success.
The DHS-funded NIST Software

Assurance Metrics and Tool Evaluation
program [28] has developed a taxonomy
of security testing tool categories that
include a database of profiles of com-
mercial and open source tools within each
category. This database is being used to
capture the results of tool evaluations
and measurements of tool effectiveness,
and it is used to conduct a gap analyses of
tool capabilities and methods.

Both DHS and the DoD continue to
dedicate resources toward achieving soft-
ware assurance [29], and individual orga-
nizations can implement practices today
to contribute toward software assurance
in the near future.

Sound Practices for Security
Enhancing Life Cycle Activities
Practitioners and program managers need
to first understand what secure software is
[30]. Appendix G of Security in the Software
Life Cycle presents a collection of security
principles and sound practices that have
been expounded on by respected practi-
tioners of secure software development
in the private, public, and academic sec-
tors, in the U.S. and abroad. These princi-
ples and practices enable the insertion of
security considerations into all phases of
the software life cycle. Appendix G also
describes practices that span life cycle

phases such as secure configuration man-
agement, security-minded quality assur-
ance, security training and education of
developers, and selection and secure use
of frameworks, platforms, development
tools, libraries, and languages. Developers
who start applying these practices today
should start to see improvements in their
software’s security, as well as its quality.
This is true even if the organizations they
work for never commit to adopting a
security-enhanced, structured develop-
ment methodology or process improve-
ment model.

Summary
With its increasing exposure and criticali-
ty, software has become a high-value tar-
get not just for malicious and recreation-
al hackers, but for highly motivated, well-
resourced cyber-terrorists, cyber-crimi-

nals, and information warfare adversaries.
At the same time, user expectations (real
or perceived) that new functionality can
be delivered near-instantaneously has dri-
ven software suppliers to adopt ever-
shortening release schedules and agile
development methods that do not allow
sufficient time for careful specification,
design, coding, and testing. As a result,
the software they produce is inordinately
convoluted and complex, with seemingly
infinite possible internal states and a mul-
tiplicity of flaws and defects. All of these
factors make software increasingly vul-
nerable to the intensifying threats that
surround it.

Developers need to start questioning
their assumptions about how software
should be built. They need to understand

that functional correctness must be
exhibited not only when the software exe-
cutes under anticipated conditions, but
also when it is subjected to unanticipated,
hostile conditions. Security in the Software
Life Cycle provides developers with infor-
mation that can help them achieve a two-
phase security enhancement of their soft-
ware processes. For the first phase,
Appendix G describes sound practices
and principles that developers can begin
to apply immediately throughout the life
cycle. These practices and principles are
intended to raise the floor, enabling devel-
opers to achieve a basic level of security
in their software processes. The security-
enhanced process improvement models
and life cycle methodologies in the rest of
the document are intended to help devel-
opers raise the ceiling over the longer term
by making additional, significant increases
in the security of their processes and by
adding structure and repeatability to fur-
ther security-enhancement of those
processes.u

References
1. United States. Dept. of Homeland

Security. BuildSecurityIn Portal. Na-
tional Cyber Security Division
<https://buildsecurityin.us-cert.
gov/>.

2 Redwine, Jr., Samuel T. ed. Software
Assurance: A Guide to the Common
Body of Knowledge to Produce,
Acquire, and Sustain Secure Software
(DRAFT Version 1.1). Washington,
D.C.: Department of Homeland
Security, July 2006 <https://build
securityin.us-cert.gov/>.

3 Goertzel, K.M., et al. Security in the
Software Life Cycle: Making Applica-
tion Development Processes – and
Software Produced by Them – More
Secure (DRAFT Version 1.1). Wash-
ington, D.C.: Department of Home-
land Security, July 2006 <https://
buildsecurityin.us-cert.gov/>.

4. National Institute of Standards and
Technology. Guideline on Network
Security Testing. Special Publication
800-42. Oct. 2003 (intended solely as a
source of information and guidance,
not as a proposed standard, directive,
or policy from DHS; descriptions of
processes, methodologies, and tech-
nologies containing this document
should not be interpreted as formal
endorsements by DHS) <http://csrc.
nist.gov/publications/nistpubs/800
-42/NIST-SP800-42.pdf>.

5. Microsoft. Microsoft Threat Analysis
& Modeling. v2.0 BETA2 <www.
microsoft.com/downloads/details.asp

“... software has
become a high-value

target not just for
malicious and

recreational hackers, but
for highly motivated,

well-resourced
cyber-terrorists,

cyber-criminals, and
information warfare

adversaries.”

x?FamilyID=570dccd9-596a-44bc
-bed7-1f6f0ad79e3d&DisplayLang
=en>.

6. CORAS. A Platform for Risk Analysis
of Security Critical Systems <www2.
nr.no/coras/>.

7. CORAS. The CORAS Project
<http://coras.sourceforge.net/>.

8. CORAS. A Tool-Supported Method-
ology for Model-Based Risk Analysis
of Security Critical Systems <http://
heim.ifi.uio.no/~ketils/coras/>.

9. SECURIS. Model-Driven Develop-
ment and Analysis of Secure
Information Systems <www.sintef.no/
content/page1_1824.aspx>.

10. The SECURIS Project. Model-Driven
Development and Analysis of Secure
Information Systems <http://heim.
ifi.uio.no/~ketils/securis/index.htm>.

11. PTA Technologies. Practical Threat
Analysis for Securing Computerized
Systems <www.ptatechnologies.com>.

12. Trike. A Conceptual Framework for
Threat Modeling <http://dymaxion.
org/trike/> and <www.octotrike.org/>.

13. National Aeronautics and Space Ad-
ministration. Reducing Software Se-
curity Risk <http://rssr.jpl.nasa.gov>.

14. “Reducing Software Security Risk
through an Integrated Approach.”
University of California-Davis
<http ://sec lab.cs.ucdav is.edu/
projects/testing/>.

15. “Visa USA Cardholder Information
Security Program: Payment Appli-
cations.” Visa <http://usa.visa.com/
bus ine s s/acce p t ing_v i s a/ops_
risk_management/cisp_payment_
applications.html>.

16. International Standard ISO/IEC
21827, System Security Engineering
(SSE)-CMM® <http://www.issea.org>
and <http://www.SSE-CMM.org>.

17. Federal Aviation Administration
Integrated Process Group. Safety and
Security Extensions to Integrated
Capability Maturity Models. Washing-
ton D.C.: Sept. 2004 <http://faa.
g ov/ ipg/news/docs/Safe tyand
Security Ext-FINAL.pdf>.

18. Lipner, Steve, and Michael Howard.
“The Trustworthy Computing Security
Development Lifecycle.” Microsoft
<http://msdn.microsoft.com/secur
ity/sdl>.

19. Howard, Michael. “How Do They Do
It?: A Look Inside the Security
Development Lifecycle at Microsoft.”
MSDN Magazine: The Microsoft
Journal for Developers. 20.11 (Nov.
2005) <http://msdn.microsoft.com/
msdnmag/ i s sues/05/11/SDL/
default.aspx>.

20. “Comprehensive, Lightweight Appli-
cation Security Process.” Secure
Software <https://securesoftware.
custhelp.com/cgi-bin/securesoftware.
cfg/php/enduser/doc_serve.php?2=
CLASP>.

21. SEI Software Process (TSP) for Secure
Systems Development <www.sei.cmu.
edu/espltsp-secure.presentation/>.

22. “ArcStyler Overview.” Interactive
Objects <www.interactive-objects.
com/products/arcstyler-overview>.

23. “Rational Software Architect.” IBM
<www.306.ibm.com/software/awd
tools/architect/swarchitect/>.

24. Lodderstedt, Torsten. “Model Driven
Security from UML Models to Access
Control Architectures.” Diss. Albert-
Ludwigs-Universität, 2003 <http://
deposit.ddb.de/cgi-bin/dokserv?

idn=971069778&dok_var=d1&dok_
ext=pdf&filename=971069778.pdf>.

25. UMLsec <http://www4.in.tum.de/~
umlsec/>.

26. “The CORAS UML Profile.” CORAS
<http://coras.source-forge.net/uml_
profile.html>.

27. Agile Alliance. “Manifesto for Agile
Software Development.” Agilemani-
festo <http://agilemanifesto.org/>.

28. National Institute of Standards &
Technology. “Software Assurance
Metrics and Tool Evaluation.”
<http://samate.nist.gov/ index.php>.

29. “Software Assurance.” Wikipedia
<http://en.wikipedia.org/wiki/
software-assurance>.

30. Goertzel, K.M. “What Is Secure
Software?” IA Newsletter (Summer
2006) <http://iac.dtic.mil/iatac>.

About the Authors

Security in the Software Life Cycle

September 2006 www.stsc.hill.af.mil 9

Karen Mercedes Goertzel
is a software security sub-
ject-matter expert sup-
porting the director of
the Department of Home-
land Security’s Software

Assurance Program, and has provided
support to the Department of Defense’s
Software Assurance Tiger Team. She
was project manager for the Defense
Information Systems Agency Appli-
cation Security Support Task, and cur-
rently leads the team developing the
National Institute of Standards and
Technology’s special publication 800-95,
Guide to Secure Web Services. In addition to
software assurance and application secu-
rity, Goertzel has extensive experience in
trusted systems and cross-domain infor-
mation sharing solutions and architec-
tures, information assurance (IA) archi-
tecture and cyber security architecture,
risk management, and mission assur-
ance. She has written and spoken exten-
sively on security topics and IA topics
both in the United States and abroad.

Booz Allen Hamilton
8283 Greensboro DR
H5061
McLean,VA 22102
Phone: (703) 902-6981
Fax: (703) 902-3537
E-mail: goertzel_karen@bah.com

Joe Jarzombek is the
Director for Software
Assurance in the De-
partment of Homeland
Security (DHS) National
Cyber Security Division.

He leads government interagency
efforts with industry, academia, and
standards organizations to shift the
security paradigm away from patch man-
agement by addressing security needs in
work force education and training,
research and development (especially
diagnostic tools), and development and
acquisition practices. After retiring from
the U.S. Air Force as a Lt. Col. in pro-
gram management, Jarzombek worked
in the cyber security industry as vice
president for product and process engi-
neering. He later served in two software-
related positions within the Office of
the Secretary of Defense prior to
accepting his current DHS position. As
a Project Management Professional,
Jarzombek has spoken extensively on
measurement, software assurance, and
acquisition topics. He encourages fur-
ther review of DHS-sponsored software
assurance efforts via the BuildSecurityIn
Web site.

National Cyber Security Division
Department of
Homeland Security
Phone: (703) 235-5126
Fax: (703) 235-5962
E-mail: joe.jarzombek@dhs.gov

